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Abstract: A map M is called an almost semi-equivelar if all the vertices of M have same

type face-cycle except one. The maps on the surfaces of square pyramid and the pentagonal

pyramid (2 out of 92 Johnson solids) provide almost semi-equivelar maps on the sphere. In

this paper, for the first time, we study and classify an almost semi-equivelar map on close

surfaces, other than sphere, particularly on torus and Klein bottle on at most 15 vertices.
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§1. Introduction

For the topological graph theory related terms, we refer to [7]. A surface (closed) F is a

connected, compact 2-dimensional manifold without boundary. An embedding of a connected,

simple graph G into F is called a map M on F if the closure of each connected component of

F \G is a p-gonal 2-disk Dp, also called face of the map, such that the non-empty intersection

of any two faces is either a vertex or an edge, see [1]. The vertices and edges of the underlying

graph G are called the vertices and edges of M . In this paper, we deal with the maps on

torus and Klein bottle. Let M1 and M2 be two maps with vertex sets V (M1) and V (M2)

respectively. Then M1 is isomorphic to M2, denoted as M1
∼= M2, if there is a bijective map

f : V (M1)→ V (M2) that preserves the incidence of edges and faces.

In a map M , a cycle of consecutive faces (Dp1
, · · ·Dpk

) around a vertex v such that Dp1
∩

Dp2 , . . . , Dpk
∩ Dp1 are edges, is called the face-cycle of v. A map is called semi-equivelar of

type (Dp1 . · · · .Dpk
) if the face-cycle of each vertex is same and of the type (Dp1 , Dp2 , · · ·Dpk

)

up to a cyclic permutation. The well known five Platonic solids and thirteen Archimedean

solids provide all possible types semi-equivelar maps on the sphere, i.e., the surface of Euler

characteristic 2. Such maps have been studied extensively by many researchers for the surfaces

other than the sphere. For a recent progress on such maps for the surfaces of Euler characteristic

0, i.e., on torus and Klein bottle, see ([4], [5], [3], [13], [11]), for the surface of Euler characteristic

−1, see ([13], [14]) and for the surfaces of Euler characteristic −2, see ([6], [10], [9]).

A map M is called an almost semi-equivelar map, briefly ASEM, if all the vertices have
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same face-cycle except one vertex. If M has one vertex with face-cycle (f1) and remaining

vertices with face-cycle (f2), we say that M is ASEM of the type [(f1)1 : (f2)]. The surfaces

of the square pyramid and pentagonal pyramid (2 of the 92 Johnson solids) provide ASEMs of

types [(3, 3, 3, 3)1 : (3, 3, 4)] and [(3, 3, 3, 3, 3)1 : (3, 3, 4)] respectively on sphere, see [8]. In this

paper, we study and classify ASEMs on torus and Klein bottle.

The article is organized as follows:, we describe almost semi-equivelar map of the type

[(3, 3, 3, 3, 3, 3)1 : (3, 3, 4, 3, 4)] for the surfaces of Euler characteristic χ = 0 and give a method-

ology to enumerate this type maps in Section 2. In Section 3, we present the results obtained

during the enumeration. In Section 4, we illustrate the methodology and prove the result.

We conclude the article by presenting some observations related to such almost semi-equivelar

maps.

§2. Methodology

Let M be an ASEM of the type [(3, 3, 3, 3, 3, 3)1 : (3, 3, 4, 3, 4)]. Let v be a vertex in M with

the face-cycle (Dp1 , Dp2 , · · · , Dpk
). Then the union of these disks, i.e., ∪ki=1Dpi is a 2-disk Dn

with the boundary cycle Cn, where n = (p1 + p2 + . . .+ pk)− 2k. Let us call this cycle Cn as

the link of v and denote it as lk(v). Thus lk(v) is a six or seven length cycle if the face-cycle

of v is (3, 3, 3, 3, 3, 3) or (3, 3, 4, 3, 4) respectively. We use the following notations to represent

these links.

The notation lk(v) = C6(v1, v2, v3, v4, v5, v6) means that the face-cycle of v is (3, 3, 3, 3, 3, 3),

i.e., triangular faces [v, v1, v2], [v, v2, v3], [v, v3, v4], [v, v4, v5], [v, v5, v6] and [v, v6, v1] are incident

at v.

The notation lk(v) = C7(v1, v2, v3,v4, v5, v6,v7) means that the face-cycle of v is (3, 3, 4, 3, 4),

i.e., triangular faces [v, v1, v2], [v, v2, v3], [v, v5, v6] and quadrangular faces [v, v3, v4, v5], [v, v6, v7,

v1] are incident at v. Note that, here bold symbols vi shows that vi is not adjacent to v.

Let V (M) = {u, v1, . . . , vn} be the vertex set of M . Here the vertex u has the face-cycle

(3, 3, 3, 3, 3, 3) and the remaining have (3, 3, 4, 3, 4). Let lk(u) = C6(v1, v2, v3, v4, v5, v6). Now,

we use the following steps to enumerate the ASEMs.

Step 1. Without loss of generality, choose v1 (one can choose any vi for 1 ≤ i ≤ 6) such

that lk(v1) = C7(v2, u, v6,α1, α2, α3,α4), where αi, for 1 ≤ i ≤ 4, is some vj ∈ V .

Step 2. For each choice of (α1, α2, α3, α4) in V (M)×V (M)×V (M)×V (M), we construct

lk(v1).

Step 3. For each possibility of lk(v1) obtained from Step 2, we repeat Step 1 and Step 2

until we do not get links of remaining vertices.

Step 4. Define an isomorphism (if possible) between the maps, which will lead to the

enumeration of the maps.

Applying the above methodology for |V | ≤ 15, we obtain the following result.

§3. Result

Theorem 3.1 Let M be an ASEM of type [(3, 3, 3, 3, 3, 3)1 : (3, 3, 4, 3, 4)] with the vertex set
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V (M). Then

(1) M does not exist for |V (M)| ≤ 9;

(2) A unique M exists for |V (M)| ≤ 12, this is K1[(3, 3, 3, 3, 3, 3)1 : (3, 3, 4, 3, 4)] on Kelin

bottle with 11 vertices;

(3) There exist exactly three such maps for |V (M)| ≤ 15 on the surfaces of Euler character-

istic χ = 0. The other two maps are K2[(3, 3, 3, 3, 3, 3)1 : (3, 3, 4, 3, 4)] and T1[(3, 3, 3, 3, 3, 3)1 :

(3, 3, 4, 3, 4)] on torus and Klein bottle, respectively, with |V (M)| = 13.

Figure 3.1 ASEMs on Klein bottle

§4. Proof: Classification of ASEMs of Type [(3, 3, 3, 3, 3, 3)1 : (3, 3, 4, 3, 4)]

Let M be an ASEM of type [(3, 3, 3, 3, 3, 3)1 : (3, 3, 4, 3, 4)] with the vertex set V (M) =

V(3,3,3,3,3,3) ∪ V(3,3,4,3,4), where V(3,3,3,3,3,3) and V(3,3,4,3,4) denote the sets of vertices with face-

cycles (3, 3, 3, 3, 3, 3) and (3, 3, 4, 3, 4) respectively. Thus for |V | ≤ 15, we let V(3,3,3,3,3,3) = {0}
and V(3,3,4,3,4) = {1, 2, · · · , n}, where n ≤ 14.

Let lk(0) = C6(1, 2, 3, 4, 5, 6). This implies lk(1) = C7(2, 0, 6,a, b, c,d), where a, b, c, d ∈
V(3,3,4,3,4). It is easy to see that (a, b, c, d) ∈ {(3, 4, 7, 8), (4, 3, 7, 8), (7, 8, 4, 5), (7, 8, 5, 4), (7, 8,

9, 10)}. Observe that, (3, 4, 7, 8) ∼= (7, 8, 4, 5) and (4, 3, 7, 8) ∼= (7, 8, 5, 4) by the map (2, 6)(3, 5)

(7, 8). Thus, we search for (a, b, c, d) ∈ {(4, 3, 7, 8), (3, 4, 7, 8), (7, 8, 9, 10)}.

Case 1. In the case (a, b, c, d) = (4, 3, 7, 8), lk(1) = C7(2, 0, 6,4, 3, 7,8). This implies lk(3) =

C7(2, 0, 4, 6, 1, 7, e) and we see that two distinct quadrangular faces share more than one vertex.

This is not allowed. Thus (a, b, c, d) 6= (4, 3, 7, 8)

Case 2. In case (a, b, c, d) = (3, 4, 7, 8), we get lk(1) = C7(2, 0, 6,3, 4, 7,8). Now considering

lk(i), for 1 ≤ i ≤ 6 and the fact that two distinct quadrangular faces share at most one vertex,

we see easily that lk(4) = C7(5, 0, 3,6, 1, 7,9). This implies lk(7) = C7(8, 10, 9,5, 4, 1,2) and

lk(2) = C7(3, 0, 1,7, 8, e,f). Observe that (e, f) ∈ {(9, 10), (11, 9), (11, 10), (11, 12)}.

Subcase 2.1. When (e, f) = (11, i), for i ∈ {9, 10}, then lk(2) = C7(3, 0, 1,7, 8, 11, i) and

lk(3) = C7(2, 0, 4,1, 6, i,11). This implies, deg(i) > 5. Hence (e, f) 6= (11, 9) or (11, 10).
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Subcase 2.2. When (e, f) = (11, 12), then lk(2) = C7(3, 0, 1,7, 8, 11,12). This implies

lk(3) = C7(2, 0, 4,1, 6, 12,11). Then lk(6) = C7(5, 0, 1,4, 3, 12,13), lk(5) = C7(4, 0, 6,12, 13,

9,7) and lk(9) = C7(14, 13, 5,4, 7, 10,15), lk(10) = C7(8, 7, 9,14, 15, j,k), now we see that j

and k have no admissible values in V(3,3,4,3,4). Thus (e, f) 6= (11, 12)

Subcase 2.3 When (e, f) = (9, 10) then successively we get lk(2) = C7(3, 0, 1,7, 8, 9,10),

lk(3) = C7(2, 0, 4,1, 6, 10,9). This implies lk(6) = C7(5, 0, 1,4, 3, 10, g), where g ∈ {8, 11}. If

g = 11, deg(10) > 5, a contradiction. On the other hand when g = 8, completing successively,

we get lk(6) = C7(5, 0, 1,4, 3, 10,8), lk(5) = C7(4, 0, 6,10, 8, 9,7), lk(9) = C7(2, 8, 5,4, 7, 10,3),

lk(8) = C7(2, 8, 5,6, 10, 7,1) and lk(10) = C7(8, 7, 9,2, 3, 6,5). This gives M ∼= K1(36 :

32, 4, 3, 4) by the map 0→ u, i→ vi for 1 ≤ i ≤ 10.

Case 3. In case (a, b, c, d) = (7, 8, 9, 10), lk(1) = C7(2, 0, 6,7, 8, 9,10). This implies lk(2) =

C7(3, 0, 1,9, 10, e,f). It is easy to see that (e, f) ∈ {(5, 6), (7, 11), (11, 7), (11, 8), (11, 12)}. Ob-

serve that, (7, 11) ∼= (11, 8) by the map (1, 2)(3, 6)(4, 5)(7, 8, 11)(9, 10). Therefore, we search for

(e, f) ∈ {(5, 6), (11, 7), (11, 8), (11, 12)}.

Subcase 3.1. If (e, f) = (5, 6), lk(2) = C7(3, 0, 1,9, 10, 5,6) and lk(6) = C7(1, 0, 5,2, 3, 7,8).

This implies lk(5) = C7(4, 0, 6,3, 2, 10, g), where g ∈ {7, 8, 11}. If g = 7 successively we get

lk(5) = C7(4, 0, 6,3, 2, 10,7), lk(10) = C7(7, 11, 9,1, 2, 5,4), lk(7) = C7(8, 11, 10,5, 4, 6,1). This

implies C5(0, 1, 8, 7, 5) ⊆ lk(6). If g = 11, lk(5) = C7(4, 0, 6,3, 2, 10,11), successively, we get

lk(10) = C7(9, 12, 11,4, 5, 2,1), lk(4) = C7(3, 0, 5,10, 11, 13,7), lk(3) = C7(2, 0, 4,13, 7, 6,5)

and lk(7) = C7(8, 14, 13, 4, 3, 6,1). Now a small computation shows that lk(8) can not be com-

pleted for the given V(3,3,4,3,4). If g = 8, lk(5) = C7(4, 0, 6,3, 2, 10,8). This implies lk(10) =

C7(8, h, 9,1, 2, 5,4). Clearly h = 7, completing successively, we get lk(8) = C7(1, 9, 4,5, 10, 7,6),

lk(3) = C7(2, 0, 4,9, 7, 6,5), lk(9) = C7(1, 8, 4,3, 7, 10,2), lk(7) = C7(8, 10, 9,4, 3, 6,1), lk(4) =

C7(3, 0, 5,10, 8, 9,7). This gives a map M ∼= K1(36 : 32, 4, 3, 4) by the map 0 7→ u, 1 7→ v2,

2 7→ v1, 3 7→ v6, 4 7→ v5, 5 7→ v4, 6 7→ v3, 7 7→ v10, 8 7→ v9, 9 7→ v8, 10 7→ v7.

Subcase 3.2. When (e, f) = (11, 7) then lk(2) = C7(1, 0, 3,7, 11, 10,9). This implies

lk(3) = C7(4, 0, 2,11, 7, g,h), where (g, h) ∈ {(8, 12), (12, 9), (12, 10), (12, 13)}.
If (g, h) = (8, 12), lk(8) = C7(1, 9, 12,4, 3, 7,6). This implies lk(9) = C7(12, 8, 1,2, 10, i, j).

Observe that, (i, j) ∈ {(5, 6), (13, 11), (13, 14)}. If (i, j) = (5, 6), considering lk(6), we see that

the degree of 7 is more than 5. If (i, j) = (13, 11) or (13, 14), we see lk(12) can not be completed.

Thus (g, h) 6= (8, 12)

If (g, h) = (12, 9), lk(4) = C7(5, 0, 3,12, 9, i, j), where (i, j) ∈ {(8, 11), (10, 13)}. In case

(i, j) = (10, 13), lk(10) = C7(2, 11, 13,5, 4, 9,1) and lk(11) = C7(13, 10, 2,3, 7, k, l), where

(k, l) ∈ {(6, 5), (8, 12), (8, 14)}. When (k, l) = (6, 5) then C5(0, 4, 10, 13, 11, 6) ⊆ lk(5). When

(k, l) = (8, 12) then, successively, considering lk(8), lk(9), lk(12), we see that deg(7) > 5.

When (k, l) = (8, 14) then considering lk(8), we see that deg(9) > 5. On the other hand

when (i, j) = (8, 11), completing successively we get lk(8) = C7(1, 9, 4,5, 11, 7,6), lk(9) =

C7(1, 8, 4,3, 12, 10,2), lk(11) = C7(2, 10, 5,4, 8, 7,3), lk(10) = C7(2, 11, 5,6, 12, 9,1), lk(5) =

C7(4, 0, 6,12, 10, 11,8), lk(6) = C7(1, 0, 5,10, 12, 7,8), lk(7) = C7(3, 12, 6,1, 8, 11,2). This

gives M ∼= T1(36 : 32, 4, 3, 4) by the map 0 7→ u, i 7→ vi for 1 ≤ i ≤ 12.

If (g, h) = (12, 10), lk(3) = C7(2, 0, 4,10, 12, 7,11). This implies lk(10) = C7(2, 11, 12,3,
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4, 9,1) or lk(10) = C7(2, 11, 4,3, 12, 9,1). In the first case, i.e., when lk(10) = C7(2, 11, 12,3,

4, 9,1) we get lk(4) = C7(3, 0, 5,13, 9, 10,12), lk(9) = C7(1, 8, 13,5, 4, 10,2), now observe

that, lk(7) = C7(3, 12, 8,1, 6, 11,2) or lk(7) = C7(3, 12, 6,1, 8, 11,2). When lk(7) = C7(3, 12,

8,1, 6, 11,2) then, successively considering lk(8) and lk(12), we see deg(10) > 5, while for

lk(7) = C7(3, 12, 6,1, 8, 11,2), considering lk(8), we see three quadrangular faces incident at 11.

Thus lk(10) 6= C7(2, 11, 12,3, 4, 9,1). On the other hand when lk(10) = C7(2, 11, 4,3, 12, 9,1)

then lk(4) = C7(5, 0, 3,12, 10, 11, i), clearly i = 8, now completing successively we get lk(11) =

C7(2, 10, 4,5, 8, 7,3), lk(7) = C7(3, 12, 6,1, 8, 11,2), lk(12) = C7(3, 7, 6,5, 9, 10,4), lk(6) =

C7(1, 0, 5,9, 12, 7,8), lk(5) = C7(4, 0, 6,12, 9, 8,11), lk(8) = C7(1, 9, 5,4, 11, 7,6), lk(9) =

C7(1, 8, 5,6, 12, 10,2). This gives M ∼= K2(36 : 32, 4, 3, 4) by the map 0 7→ u, i 7→ vi for

1 ≤ i ≤ 12.

When (g, h) = (12, 13), then lk(7) = C7(3, 12, 6,1, 8, 11,2) or lk(7) = C7(3, 12, 8,1, 6, 11,

2). In the first case when lk(7) = C7(3, 12, 6,1, 8, 11,2), we get lk(6) = C7(5, 0, 1,8, 7, 12, i),

where i ∈ {9, 10, 14}. If i = 9 and 10, considering lk(12), we see deg(9) > 5 and lk(10) > 5 re-

spectively. If i = 14, lk(12) = C7(3, 7, 6,5, 14, 13,4). This implies lk(5) = C7(4, 0, 6,12, 14, j,k)

and lk(4) = C7(5, 0, 3,12, 13, k, j). Observe that j and k have no admissible values from V . On

the other hand when lk(7) = C7(3, 12, 8,1, 6, 11,2) then lk(12) = C7(8, 7, 3,4, 13, i, j), where

(i, j) ∈ {(10, 11), (14, 9), (14, 10)}. If (i, j) = (10, 11), successively considering lk(12), lk(10),

lk(11), we see that deg(6) > 5. If (i, j) = (14, 9), lk(9) = C7(10, k, 14,12, 8, 1,2) and we

get no value for k from V . If (i, j) = (14, 10), lk(8) = C7(1, 9, 10,14, 12, 7,6), this implies

C4(1, 2, 10, 8) ⊆ lk(9). So (g, h) 6= (12, 13)

Subcase 3.3. When (e, f) = (11, 8) then lk(8) = C7(1, 9, 3,2, 11, 7,6) or lk(8) =

C7(1, 9, 11,2, 3, 7, 6). In case, lk(8) = C7(1, 9, 11,2, 3, 7,6), we have lk(9) = C7(11, 8, 1,

2, 10, i, j), for (i, j) ∈ {(4, 5), (5, 4), (12, 13)}. If (i, j) = (4, 5), lk(11) = C7(2, 10, 5,4, 9, 8,3),

now considering lk(10), we see that the set {4, 5} is an edge and non-edge both. If (i, j) = (5, 4),

lk(11) = C7(2, 10, 4,5, 9, 8,3), now considering lk(10) we see that the set {4, 5} is an edge

and non-edge both. If (i, j) = (12, 13), lk(11) = C7(2, 10, 13,12, 9, 8,3), now considering

lk(10), we see that the set {12, 13} is an edge and non-edge both. On the other hand when

lk(8) = C7(1, 9, 3,2, 11, 7,6) then lk(9) = C7(1, 8, 3,4, 12, 10,2), lk(3) = C7(2, 0, 4,12, 9, 8,11).

This implies lk(4) = C7(5, 0, 3,9, 12, g,h), where (g, h) ∈ {(7, 11), (13, 14)}. If (g, h) = (13, 14),

lk(5) = C7(6, 0, 4,13, 14, i, j) and lk(6) = C7(5, 0, 1,8, 7, j, i), but we see that i and j have

no admissible value from V . If (g, h) = (7, 11), lk(7) = C7(4, 12, 6,1, 8, 11,5), this implies

lk(6) = C7(5, 0, 1,8, 7, 12, i). Observe that i = 10, now completing successively we get lk(6) =

C7(1, 0, 5, 10, 12, 7,8), lk(5) = C7(4, 0, 6,12, 10, 11,7), lk(10) = C7(2, 11, 5,6, 12, 9, 1), lk(11) =

C7(2, 10, 5, 4, 7, 8,3), lk(12) = C7(4, 7, 6,5, 10, 9,3). This gives M ∼= K2(36 : 32, 4, 3, 4) via

0 7→ u, 1 7→ v4, 2 7→ v3, 3 7→ v2, 4 7→ v1, 5 7→ v6, 6 7→ v5, 7 7→ v8, 8 7→ v11, 9 7→ v10, 10 7→ v12,

11 7→ v7, 12 7→ v9.

Subcase 3.4. When (e, f) = (11, 12) then lk(3) = C7(4, 0, 2,11, 12, g,h). It is easy to

see that (g, h) ∈ {(7, 13), (8, 9), (9, 8), (13, 7), (13, 8), (13, 9), (13, 10), (13, 14)}.

If (g, h) = (7, 13), then lk(7) = C7(6, 12, 3,4, 13, 8,1) or lk(7) = C7(8, 12, 3,4, 13, 6,1). In

case lk(7) = C7(6, 12, 3,4, 13, 8,1), lk(6) = C7(5, 0, 1,8, 7, 12, i). Observe that i ∈ {9, 10, 13}.
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If i = 9, lk(9) = C7(1, 8, 5,6, 12, 10,2) or lk(9) = C7(1, 8, 12,6, 5, 10,2), but for both the

cases of lk(9), we see deg(12) > 5. If i = 10 then lk(12) = C7(3, 7, 6,5, 10, 11,2) and we get

C4(2, 3, 12, 10) ⊆ lk(11). If i = 13, lk(12) = C7(3, 7, 6,5, 13, 11,2) and we get deg(13) > 5.

Thus lk(7) 6= C7(6, 12, 3,4, 13, 8,1) On the other hand when lk(7) = C7(8, 12, 3,4, 13, 6,1)

then lk(6) = C7(5, 0, 1,8, 7, 13, i). Observe that i ∈ {9, 10, 11, 14}. If i = 9, considering

successively lk(13), lk(10), lk(5), we get deg(9) > 5. If i = 10, lk(13) = C7(4, j, 10,5, 6, 7,3),

where j ∈ {9, 11}. If j = 9, considering successively lk(10), lk(9) and lk(5), we get deg(10) > 5

and if j = 11, we get three consecutive triangular faces incident at 11. When i = 11, three

consecutive triangular faces at 10. When i = 14, lk(13) = C7(4, j, 14,5, 6, 7,3) and we get no

value for j in V . So (g, h) 6= (7, 13)

If (g, h) = (8, 9), successively we get lk(8) = C7(3, 12, 7,6, 1, 9,4), lk(9) = C7(4, 13, 10,2,

1, 8, 3). This implies lk(4) = C7(5, 0, 3,8, 9, 13, j), where i ∈ {7, 11, 14}. When i = 7,

lk(7) = C7(5, 12, 8,1, 6, 13,4), now considering lk(4) and lk(6), we see that two distinct quad-

rangular faces share more than one vertex. When i = 11 then successively we get lk(11) =

C7(5, 10, 2,3, 12, 13,4), lk(10) = C7(2, 11, 5,6, 13, 9,1). But deg(13) > 5. If i = 14, succes-

sively, we get lk(13) = C7(4, 9, 10,12, 7, 14,5), lk(7) = C7(6, 14, 13,10, 12, 8,1) and lk(6) =

C7(5, 0, 1,8, 7, 14, j), now observe that the set {5, 14} forms an edge and non-edge both. So,

(g, h) 6= (8, 9)

Computing similarly for (g, h) ∈ {(8, 9), (9, 8), (13, 7), (13, 8), (13, 9), (13, 10), (13, 14)}, one

can see easily that no map exists and therefore (e, f) 6= (11, 12). This completes the exhaustive

search and thus the proof. �

§5. Discussion

Note that ASEMs are a generalization of maps on Johnson solids to the close surfaces other

than the 2-sphere. One can construct infinitely many types ASEMs on the sphere as follows:

consider an n-gonal disk Dn, n ≥ 4, with vertex set V (Dn) = {a1, a2, · · · , an} and a vertex a

out side this disk, now join a to each ai, 1 ≤ i ≤ n, by an edge. This gives ASEMs of type

[(3.3. . . . .3(n-times))1 : (3.3.n)] for each n ≥ 4. In the present work, existence of ASEMs is

shown for the surfaces of Euler characteristic 0, that is, for the torus and Klein bottle. This

study motivates us to explore other types of ASEMs on the torus and Klein bottle including

other closed surfaces. As a consequence, the following natural question occurs.

Question 5.1 Can we construct ASEMs of types, other than [(3, 3, 3, 3, 3, 3)1 : (3, 3, 4, 3, 4)],

on the torus or Klein bottle?
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